LETTER TO THE EDITOR

Determination of Mn Valence from X-Ray Absorption Near Edge Structure and Study of Magnetic Behavior in Hole-Doped (Nd12*^x***Ca***x***)MnO3 System**

R. S. Liu, J. B. Wu, and C. Y. Chang

Department of Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China

J. G. Lin and C. Y. Huang

Center for Condensed Matter Sciences and Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China

and

J. M. Chen and R. G. Liu

Synchrotron Radiation Research Center, Hsinchu, Taiwan, Republic of China

Communicated by J. M. Honig, May 7, 1996; accepted June 11, 1996

The Mn valence in $(Nd_{1-x}Ca_x)MnO_3$ **(** $x = 0-0.5$ **) has been as Pb, Ba, Sr, and Ca in** $Ln_{1-x}A_xMnO_3$ **can lead to strong successfully determined using Mn 2_{***x***}-edge X-ray absorption ferromagnetism and metallic conductivity** successfully determined using Mn 2_p -edge X-ray absorption ferromagnetism and metallic conductivity for *x* around 0.3.
near edge structure spectra. Moreover, we have measured the This geaults in a Ma^{3+/Ma4+} mixed vale near edge structure spectra. Moreover, we have measured the
magnetic properties across the series ($Nd_{1-x}Ca_x$)MnO₃; the re-
sults show that the perovskite NdMnO₃ is an antiferromagnet
with two Néel temperatures (T.) of with two Néel temperatures (T_N) of 14 and 60 K, respectively. The resistivity drop of these materials due to an external **By** replacement of Nd³⁺ with Ca²⁺, the mixed compounds magnetic field is usually much larger t By replacement of Nd^{3+} with Ca^{2+} , the mixed compounds $(Nd_{1-x}Ca_x)MnO_3$ became ferromagnetic with a Curie tempera-
ture of around 130 K (T_c) for x in the range 0.1–0.3. Further-
is of current interest due to the possibility of producing ture of around 130 K (T_C) for x in the range 0.1–0.3. Further-
more, two weak antiferromagnetic transitions with T_N 's of current interest due to the possibility of producing
more, two weak antiferromagnetic transition **0.2–0.3. For** $x \ge 0.4$ **, the samples change to antiferromagnetic** The ferromagnetic ground state of metallic $Ln_{1-x}A_x$ with T_N 's of around 30 K together with a weak broad ferromag- MnO_3 is caused by the so-called "double exchange" inter**netic transition with** T_c 's of around 130 K. It is also important action between the Mn³⁺ and Mn⁴⁺ ions. Therefore, the to note that the charge-ordering-induced antiferromagnetic determination of the valence of Mn

the observation of giant magnetoresistance (GMR) in films the valence of Mn in $(Nd_{1-x}Ca_x)MnO_3$ ($x = 0-0.5$) by (1–3) and single crystals (4, 5), as well as in polycrystalline using Mn 2*p*-edge X-ray absorption near edge structure pellets (6–10) of hole-doped *Ln*MnO₃ with the general (XANES) spectra. Moreover, the magnetic transition inchemical composition $Ln_{1-x}A_xMnO_3$ ($Ln =$ rare earth; duced by the variation of the chemical substituent *x* in $A = Pb$, Ba, Sr, Ca). It is known that partial chemical $(Nd_{1-x}Ca_x)MnO_3$ will also be reported.

0022-4596/96 \$18.00

All rights of reproduction in any form reserved.

replacement of Ln^{3+} ions with 2+ valence ions (*A*) such

to note that the charge-ordering-induced antiferromagnetic
transition of the valence of Mn ions in $Ln_{1-x}A_x$
transition at the temperature (T_{CO}) 250 K was observed in the
samples of $x = 0.4$ and 0.5. © 1996 Academic Pr Conventional redox titration (e.g., using potassium permanganate and ferrous sulfate) by dissolving the samples **1. INTRODUCTION** in adequate solvent is widely used for this purpose. Here, Recently considerable attention has been attracted to we demonstrate a nondestructive method for determining

2. EXPERIMENTAL

High purity powders of Nd_2O_3 , MnO_2 , and CaO were weighed in the appropriate proportions to constitute the nominal compositions of $(Nd_{1-x}Ca_x)MnO_3$ ($x = 0-0.5$). The mixture was first heated in air to 900° C for 12 hr. The preheated powders were then ground and pressed into a pellet (15 mm in diameter and 3 mm in thickness) under a pressure of 5 ton/cm². The pellets were then sintered at 1200° C for 12 hr in air. After sintering, the furnace was cooled to room temperature at a rate of 5° C/min. The X-ray diffraction analyses carried out with a Phillips diffractometer ($CuK\alpha$ radiation) show that the materials across the series crystallize as a pure phase. The valence of Mn was determined by the X-ray absorption technique. The X-ray absorption measurements were carried out on the 6 m high-energy sphere grating monochromator (HSGM) beamline of the Synchrotron Radiation Research Center (SRRC) in Taiwan. During the measurements, the energy resolution of the monochromator was set to about 0.25 eV at the Mn 2*p* edge (\sim 640 eV). The photon energies were calibrated within an accuracy of 0.1 eV via the known O*K* edge absorption peak of CuO. The magnetic properties of the samples were measured (zero-field cooled) in
an applied magnetic field of 1000 G using a Quantum
Design (MPMS) SQUID magnetometer.
 $\frac{(XANES)}{Mn_2O_3 (Mn^{3+})}$.

3. RESULTS AND DISCUSSION

(XANES) spectra of $(Nd_{1-x}Ca_x)MnO_3$ for various Ca con-
centrations are shown in Fig. 1. For comparison, the Mn tion. This proved that holes can be efficiently induced and 2*p* X-ray absorption spectra of MnO₂ (Mn⁴⁺) and Mn₂O₃ increased in the Mn sites with increasing *x* (i.e., Ca²⁺ substi-
(Mn³⁺) are also plotted in Fig. 1. As seen from Fig. 1, the tuting for Nd³⁺) in (Nd₁₋ $(Mn³⁺)$ are also plotted in Fig. 1. As seen from Fig. 1, the tuting for Nd³⁺) in $(Nd_{1-x}Ca_x)MnO₃$. As demonstrated in spectra show two broad multiplet structures separated by Fig. 1, the main peak posit spin–orbit splitting. Furthermore, when Nd^{3+} is replaced $NdMnO_3$ is closer to that in Mn_2O_3 with Mn^{3+} in a slightly by Ca^{2+} in $(Nd_{1-x}Ca_x)MnO_3$, the Mn 2*p* spectra change distorted octahedral symmetry. The valence of Mn in the shape and shift toward higher energies, as indicated in Fig. $(Nd_{1-x}Ca_x)MnO_3$ system increases with increa 1. In particular, the maximum of the $Mn_{3/2}$ multiplet in centration. This leads to the conclusion that the chemical Fig. 1, marked by arrows, moves from 641.8 eV in NdMnO₃ shifts of the absorption peak in X-ray absorption spectra to 643.3 eV in $(Nd_0, Ca_0)MnO_3$. The change of the spec- could be deduced from charge variations when difficult or tral shape is due to the variation in symmetry of the ground nearly impossible to calculate. state (13). The chemical shift is caused by changes in the In Fig. 2, we show the temperature dependence of the electrostatic energy at the Mn site driven by the variation magnetization at a magnetic field of 1000 G for the series of of the ionic valence in the compounds. It is well established the $(Nd_{1-x}Ca_x)MnO_3$ ($x = 0-0.5$) compounds. The parent that the effective ionic valence of the compounds can be $N dMnO₃$ compound is an antiferromagnet with two Neel measured from the chemical shift of the core-level X-ray temperatures of around 14 and 60 K, respectively (as shown photoemission spectroscopy (14, 15). However, it has been in Fig. 2). The NdMnO₃ compound contains Mn^{3+} ions also experimentally shown that the chemical shift of the first unoccupied excited state in the core-level X-ray ab-
This is confirmed by the X-ray absorption from the main sorption spectrum is related to the effective ionic valence peak position of the Mn $2p$ -edge in the NdMnO₃ com-(16, 17). Recently, these chemical shifts in electron energy pound which is near that in Mn_2O_3 with Mn^{3+} in a slightly loss spectroscopy (EELS) were also used to determine the distorted octahedral symmetry (as sho loss spectroscopy (EELS) were also used to determine the valences of the transition-metal based compounds (18). t_2 electrons are localized and so can be regarded as local

We therefore adopt the same scheme to obtain the Mn The Mn 2*p*-edge X-ray absorption near edge structure valence in the system studied. A plot of the ionic valence tion. This proved that holes can be efficiently induced and Fig. 1, the main peak position of the Mn $2p$ -edge in $(Nd_{1-x}Ca_x)MnO_3$ system increases with increasing Ca con-

 ${}^{3}e_{g}^{1}$ (spin quantum number *S* = 2) configuration.

FIG. 2. Temperature dependence of magnetization at a magnetic field of 1000 G for the series of the $(Nd_{1-x}Ca_x)MnO_3$ ($x = 0-0.5$) compounds.

strongly hybridized with the oxygen 2*p* state and cause near 50% doping. A similar effect has been observed in antiferromagnetic superexchange coupling. However, the the $(\text{Pr}_{1-x}\text{Sr}_x)\text{MnO}_3$ (21), $(\text{Pr}_{1-x}\text{Ca}_x)\text{MnO}_3$ (22), and (La_{1-*x*} reason for the observation of two T_N 's in $(Nd_{1-x}Ca_x)MnO_3$ Ca_x/MnO_3 (23) systems with T_{CO} 's of 140, 250, and 170 K, is still unclear, which may be due to the phase transforma- respectively, for $x \sim 0.5$. The application of a magnetic tion at these two temperatures or to the contribution from field can melt this charge ordering state, leading to a large the magnetic spins from the Nd^{3+} ions coupling with that decrease in resistivity and a ferromagnetic state (21, 22). from the Mn³⁺ ions. For $0.1 \le x \le 0.3$, the (Nd_{1-x}Ca_x)MnO₃ More details about the relationship between the magnetic samples change from the antiferromagnetic state into the transition and phase transformation with variation of temferromagnetic state with *T*_C's of around 130 K (see Fig. perature in $(Nd_{1-x}Ca_x)MnO_3$ are currently being investi-2). This may be because the chemical substitution of Sr^{2+} gated. for La³⁺ introduces holes into the e_g orbitals (e.g., an increase in the valence of Mn above $3+$) that are mobile and mediate an interatomic ferromagnetic interaction between **ACKNOWLEDGMENTS** the Mn atoms; the e_g electrons procure kinetic energy
through the so-called "double-exchange interaction" (19,
20). Recently, such a strongly spin–charge coupled state $\frac{002-023}{002-023}$. has been extensively reexamined in light of the observation of an enormous magnetoresistive effect (1–10). Furthermore, two weak antiferromagnetic components with Néel **REFERENCES** temperatures (T_N) of around 30 and 75 K, respectively, embedded in the matrix of the ferromagnet have also been 1. K. Chahara, T. Ohno, M. Kasai, and Y. Kozono, Appl. Phys. Lett.
found in the range $x = 0.2-0.3$. Such behavior may corre-
spond to the exhibition of multiple int such low temperatures. For $x \ge 0.4$, the samples change α , S. Jim, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, to antiferromagnetic with T_N 's of around 30 K together and L. H. Chen, *Science* 264, 413 (1994).
with a weak broader ferromagnetic part with T_C 's of 4. R.M. Kusters, J. Singleton, D. A. Keen, R. McGreevy, and W. Have with a weak broader ferromagnetic part with $T_{\rm C}$'s of 4. R.M. Kusters, J. Singleton, around 130 K as shown in Fig. 2. Moreover, the charges, *Physica B* 155, 362 (1989). around 130 K as shown in Fig. 2. Moreover, the charge-
ordering-induced antiferromagnetic transition at the tem-
perature (T_{CO}) 250 K was observed in the samples of $x =$
Duevara, F. Millot, L. Pinsard, and A. Revcole 0.4 and 0.5 (more pronounced at $x = 0.5$), as indicated in 6. S. Jin, H. M. O'Bryan, T. H. Tiefel, M. McCormack, and W. W. the insets of Fig. 2. This is contributed from the ordering Rhodes, *Appl. Phys. Lett.* **66,** 382 (1995).

spins with $S = \frac{3}{2}$. In contrast, the e_g electrons in Mn³⁺ are of the Mn ions into a Mn³⁺/Mn⁴⁺ sublattice at compositions

-
-
-
-
-
-
- *J. Solid State Chem.* **114,** 297 (1995). sterdam, 1971.
- 8. B. Raveau, A. Maignan, and V. Caignaert, *J. Solid State Chem.* **117,** 15. T. A. Carlson, ''Photoelectron and Auger Spectroscopy,'' Plenum, 424 (1995). New York, 1975.
- *J. Solid State Chem.* **120,** 204 (1995). 1992.
- **53,** 3348 (1996). and R. Prins, Eds.), p. 573. Wiley, New York, 1988.
- 11. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, 18. Taftø and O. L. Krivanek, *Phys. Rev. Lett.* **48,** 560 (1982). P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, *Phys. Rev.* 19. C. Zener, *Phys. Rev.* **82,** 403 (1951). *Lett.* **61,** 2472 (1988). 20. J. B. Goodenough, *Phys. Rev.* **100,** 564 (1955).
- 2304 (1990). kura, *Phys. Rev. Lett.* **74,** 5108 (1995).
- *Phys. Rev. B* **41,** 928 (1990). *Rev. B* **52,** R14303 (1995).
- 14. K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Heden, 23. P. G. Radaelli, D. E. Cox, M. Marezio, S.-W. Cheong, P. E. Schiffer, K. Hamrin, U. Gelius, T. Berkmark, L. O. Werme, R. Manne, and and A. P. Ramirez, K. Hamrin, U. Gelius, T. Berkmark, L. O. Werme, R. Manne, and

7. R. Mahesh, R. Mahendiran, A. K. Raychaudhuri, and C. N. R. Rao, Y. Baer, ''ESCA Applied to Free Molecules,'' North Holland, Am-

-
- 9. R. Mahesh, R. Mahendiran, A. K. Raychaudhuri, and C. N. R. Rao, 16. J. Stohr, ''NEXAFS Spectroscopy,'' Spring-Verlag, New York,
- 10. R. Mahendiran, S. K. Tiwary, A. K. Raychaudhuri, and T. V. Ramak- 17. A. Bianconi, *in* ''X-ray Absorption: Principles, Applications, Techrishnan, R. Mahesh, N. Rangavittal, and C. N. R. Rao, *Phys. Rev. B* niques of EXAFS, SEXAFS, and XANES'' (D. C. Koningsberger
	-
	-
	-
- 12. S. S. P. Parkin, N. More, and K. P. Roche, *Phys. Rev. Lett.* **64,** 21. Y. Tomioka, A. Asamitsu, Y. Moritomo, H. Kuwahara, and Y. To-
- 13. F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, 22. M. R. Lees, J. Barratt, G. Balakrishnan, and D. McK. Paul, *Phys.*
	-